Microsoft word - re-revised paper_planta medica-20110721-final.doc
This is an author produced version of a paper published in
Planta Medica
This paper has been peer-reviewed but does not include the final publisher proof-
corrections or journal pagination.
Citation for the published paper:
Endale, Milkyas; Alao, John Patrick; Akala, H. M.; Rono, N. K.; Eyase, F. L.;
Derese, S.; Ndakala, A.; Mbugua, M.; Walsh, D. S.; Sunnerhagen, Per;
Erdelyi, Mate; Yenesew, Abiy
Antiplasmodial Quinones from Pentas longiflora and Pentas lanceolata
Planta Medica, 78 ( 1 ) s. 31-35
Access to the published version may require subscription. Published with
permission from:
Thieme
Gothenburg University Publications
http://gup.ub.gu.se
Research article:
Antiplasmodial Quinones from Pentas longiflora and Pentas lanceolata
Planta Medica 2012,
78, 31-35
The publisher's copyright information is available on:
The publisher's version of the article is available on:
ORIGINAL PAPER
Antiplasmodial Quinones from
Pentas longiflora
and
Pentas lanceolata
Milkyas Endale, 1 John Patrick Alao, 2 Hoseah M. Akala, 3 Nelson K. Rono, 1 Fredrick L.
Eyase,3 Solomon Derese,1 Albert Ndakala, 1 Martin Mbugua, 1 Douglas S. Walsh, 3 Per
Sunnerhagen, 2 Mate Erdelyi, 4* Abiy Yenesew1*
AFFILIATION
1Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
2Department of Cell- and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg,
Sweden. 3United States Army Medical Research Unit-Kenya, MRU 64109, APO, AE 09831-
4109, USA. 4Department of Chemistry, University of Gothenburg, SE-412 96 Gothenburg,
Sweden
and the Swedish NMR Centre, University of Gothenburg, P.O. Box 465, SE-40530
Gothenburg, Sweden
CORRESPONDENCE
* (AbiyYenesew) Tel/Fax: +254-02-4446138, E-mail:
[email protected]. (Mate Erdelyi)
Tel: +46-31-7869033, E-mail:
[email protected]
ABSTRACT The dichloromethane/methanol (1:1) extracts of the roots of
Pentas longiflora and
Pentas lanceolata showed low micromolar (IC50 = 0.9-3µg/mL)
in vitro antiplasmodial activity
against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of
Plasmodium
falciparum. Chromatographic separation of the extract of
Pentas longiflora led to the isolation of
the pyranonaphthoquinones pentalongin (
1) and psychorubrin (
2) with IC50 values below 1
µg/mL and the naphthalene derivative mollugin (
3) which showed marginal activity. Similar
treatment of
Pentas lanceolata led to the isolation of eight anthraquinones (
4-11, IC50 = 5-
31µg/mL) of which one is new (5,6-dihydroxydamnacanthol,
11) while three - nordamnacanthal
(
7), lucidin-ω-methyl ether (
9)
, and damnacanthol (
10) - are reported here for the first time from
the genus
Pentas. The compounds were identified by NMR and mass spectroscopic techniques.
KEYWORDS Pentas longiflora,
Pentas lanceolata, Rubiaceae, anthraquinone, 5,6-
dihydroxydamnacanthol, pyranonaphthoquinone, malaria
According to the estimates of the World Health Organization almost one million deaths are
caused by malaria each year in Africa alone, of which most are children under the age of five [1].
In addition, this mosquito-borne disease has a serious economic impact due to loss of
commercial and labor outputs predominantly in countries with tropical and subtropical climates.
Over 300, 000, 000 people worldwide are infected, and each year, nearly one third of these
exhibit acute manifestations of the disease [2]. While awaiting the development of a malaria
vaccine, millions of lives are still dependent upon treatment with chemotherapeutic agents. Since
most of the available drugs are becoming increasingly ineffective due to the rapid emergence of
resistant
Plasmodium falciparum strains [3], there is an urgent need for novel antimalarial
agents. Because of the high cost of the few still effective antimalarial drugs [4] traditional
medicine remains an important source of treatment in developing countries.
Pentas
longiflora Oliver (Rubiaceae) is an important medicinal plant of Tropical East
Africa [5]. In Kenya, a decoction of its roots mixed with milk is taken as a cure for malaria [6].
Although, its leaves have previously been tested for
in vitro antimalarial activity; no attempts
were made to isolate and identify the antiplasmodial constituents [7].
Pentas lanceolata (Forsk.)
is mostly found in the highlands of Kenya and was reported to exhibit micromolar
in vitro
antiplasmodial activity against
P. falciparum [8]. Although extracts of these plants have been
assayed against a range of diseases [8, 9], their constituents have not been investigated for
antiplasmodial activity. Motivated by the traditional uses and the preliminary screening reports
[7, 8, 9], we performed isolation, characterization and antiplasmodial investigation of
naphthoquinones and anthraquinones found in the extracts of the roots of
P. longiflora and
P.
lanceolata.
MATERIALS AND METHODS
General experimental procedures: Column chromatography was performed on oxalic acid
impregnated silica gel [the silica gel was deactivated by mixing 2 kg of silica gel 60 (70-230
mesh) with 3% oxalic acid (30 g in 1L water) and allowed to stand for 30 min, filtered and dried
in an oven (100oC) for 45 min]. TLC was done using silica gel 60 F254 (Merck) precoated plates
NMR analyses were carried out on Varian 800, 600, 500 and 200 MHz spectrometers. Structural
assignment was performed based on gCOSY, gTOCSY, gNOESY, gHSQC, gHMBC, and
gH2BC spectra. ESI LC-MS was performed on a Perkin Elmer PE SCIEX API 150 EX
instrument equipped with a Turbolon spray ion source and a Gemini 5 mm C18 110 Å HPLC
column using a water-acetonitrile gradient (80:20 to 20:80). High-resolution mass spectral
analysis (Q-TOF-MS) was performed at Stenhagen Analyslab AB, Gothenburg, Sweden.
Compound purity was determined by NMR and HPLC. Analytical HPLC was run on a Hewlett
Packard Series 1050 HPLC using the Software Chromulan (Pikron Ltd), a Gemini 5 mm
C18 110 Å HPLC column and methanol-water mixture as eluent.
Plant material: The roots of
Pentas longiflora were collected from Nandi East district, Kenya
(Nandi Hills-Chebarus location) in August, 2009. The roots of
Pentas lanceolata were collected
from Ngong forest in December, 2009. The plant materials were identified by Mr Patrick Chalo
Mutiso, School of Biological Sciences, University of Nairobi. Specimens are deposited at the
Herbarium, School of Biological Sciences, University of Nairobi under voucher numbers MEA
2009/001 (
Pentas longiflora) and MEA 2009/002 (
Pentas lanceolata).
Extraction and isolation: The dried and grounded roots of
Pentas longiflora (1.1 kg)
were
extracted by cold percolation with CH2Cl2:MeOH (1:1) three times for 24 hrs in each case. The
extract was concentrated using a rotary evaporator to yield a brownish crude extract (50 g, 4.54
%). A 35 g portion of the crude extract was subjected to column chromatography (80 cm length
and 80 mm diameter column size, 350 g oxalic acid impregnated silica gel) with increasing
gradient of acetone in n-hexane. Two hundred fractions (each
ca. 200 mL) were collected.
Fractions 15-17 (2% acetone in n-hexane) were purified by Sephadex LH-20 (eluent
CH2Cl2:MeOH; 1:1) to give mollugin (
3, 34 mg). Fractions 18-25 (3% acetone in n-hexane) were
purified by column chromatography on oxalic acid impregnated silica gel (eluent, 2% acetone in
n-hexane) to give pentalongin (
1, 40 mg). Fractions 90-112 (20% acetone in n-hexane) were
combined and purified by Sephadex LH-20 (eluent, CH2Cl2/MeOH; 1:1) to give psychorubrin (
2,
The ground roots (1.4 kg) of
Pentas lanceolata were extracted with CH2Cl2:MeOH (1:1) and
then with methanol three times for 24 hrs in each case. The extracts were concentrated using a
rotary evaporator to yield a brownish crude extract (57 g, 4.8%) and (100 g, 7.1%), respectively.
A 54 g portion of the crude CH2Cl2:MeOH (1:1) extract was subjected to column
chromatography (80 cm length and 80 mm diameter, 420 g oxalic acid impregnated silica gel)
with increasing gradient of ethyl acetate in n-hexane. A total of 550 fractions (each 200 mL)
were collected. Fractions 10-13 (2% ethyl acetate in n-hexane) were combined and purified on
Sephadex LH-20 (eluent, CH2Cl2:MeOH; 1:1) to give tectoquinone (
4, 40 mg). Fractions 15-25
(eluent, 3% ethyl acetate in n-hexane) were combined and purified by Sephadex LH-20 (eluent,
CH2Cl2:MeOH; 1:1) to give rubiadin (
5, 680 mg) and rubiadin-1-methyl ether (
6, 50 mg).
Fractions 30-35 (5% ethyl acetate in n-hexane as eluent) were combined and purified by column
chromatography to give damnacanthal (
8, 320 mg). Fractions 53-65 (7% ethyl acetate in n-
hexane) were combined and purified on Sephadex LH-20 with CH2Cl2:MeOH; (1:1) as eluent to
give nordamnacanthal (
7, 20 mg). Fractions 131-135 (18% ethyl acetate in n-hexane) were
combined and purified using column chromatography on oxalic acid impregnated silica gel
(increasing gradient of ethyl acetate in n-hexane) to give lucidin-ω-methyl ether (
9, 50 mg).
Fractions 400-405 (50% ethyl acetate in n-hexane) were combined and purified by MPLC
(increasing gradient of ethyl acetate in n-hexane as eluent, flow rate of 30 mL/min) to give
damnacanthol (
10, 50 mg).
The methanol extract (70 g) was subjected to column chromatography on oxalic acid
impregnated silica gel (80 cm length and 80 mm diameter, 500 g oxalic acid impregnated silica
gel) eluting with increasing gradient of methanol in dichloromethane. A total of 100 fractions
(each
ca. 200 mL) were collected. Fractions 5-11 (100% dichloromethane) were combined and
purified on Sephadex LH-20 (eluent, CH2Cl2:MeOH; 1:1) to give rubiadin (
5, 20 mg) and
rubiadin-1-methyl ether (
6, 18 mg). Fractions 21-25 (eluent, 1% of methanol in CH2Cl2) were
combined and further purified on Sephadex LH-20 (eluent, CH2Cl2:MeOH; 1:1) to give
damnacanthol (
10, 15 mg). Fractions 87-90 (5% MeOH in CH2Cl2) were combined and purified
using Sephadex LH-20 (eluent, CH2Cl2/MeOH; 1:1) to give 5,6-dihydroxydamnacanthol (
11, 40
Drugs: The reference antimalarial drugs, chloroquine and mefloquine having well-documented
IC50 values were tested alongside test samples pyranonaphthoquinones and a naphthalene
derivative isolated from the roots of
Pentas longiflora; anthraquinones isolated from the roots of
Pentas lanceolata as described above.
Drug susceptibility testing: Two laboratory clones of
Plasmodium falciparum, the Sierra Leone
D6 chloroquine-sensitive and the Indochina W2 chloroquine-resistant were maintained in
continuous culture to attain replication robustness prior to assays. Drug susceptibility was tested
by the Malaria SYBR Green I-based
in vitro assay technique described in Juma
et al. [10].
Cytotoxicity assay: Experimental details are given in the supporting information.
5,6-Dihydroxydamnacanthol (11). Red solid. UV (CH3OH) max 218, 274, 308, 424, nm. 1H
NMR (Table 2). 13C NMR (Table 2) HRMS (ESI):
m/z = 317.0659 [M+H]+, calcd. 317.06558.
RESULTS AND DISCUSSION
In our hands, the root extracts of
P. longiflora and
P. lanceolata showed significant
antiplasmodial activities (Table 1). From the root extract of
P. longiflora the naphthoquinone
derivatives pentalongin (
1) [11, 12, 13], psychorubrin (
2) [14] and mollugin (
3) [15, 13] were
chromatographically isolated, identified and tested for antiplasmodial activities. The major
constituents
1 and
2 showed good to moderate activities (IC50 < 1 µg/mL) whereas
3 has
marginal inhibition against the W2 chloroquine-resistant and D6 chloroquine-sensitive strains of
P. falciparum (Table 1). Although these compounds were previously reported [11, 12] and
studied for antibacterial [16], antifungal [17], and antiviral [18] properties, their antiplasmodial
activities are reported here for the first time.
Chromatographic separation of the dichloromethane/methanol (1:1) extract of the roots of
P.
lanceolata resulted in the isolation of seven known anthraquinones (Figure 2), spectroscopically
(NMR and MS) identified as tectoquinone (
4) [15], rubiadin (
5) [19], rubiadin-1-methyl ether (
6)
[19], nordamnacanthal (
7) [20], damnacanthal (
8) [19], lucidin-ω-methyl ether (
9) [26, 29], and
damnacanthol (
10) [21]. Three of these (
7, 9 and
10) are reported here for the first time from the
genus
Pentas. In agreement with previous investigations on rubiadin-1-methyl ether (
6),
damnacanthal (
8), and lucidin-ω-methyl ether (
9) [22], the anthraquinones isolated from the roots
of
P. lanceolata showed moderate antiplasmodial activities (Table 1).
The methanol extract yielded further amounts of
4,
5,
10 and a new compound
11 (Figure 3)
isolated as a red solid. The Q-TOF-MS spectrum provided the exact mass at
m/z 317.0659
[M+H]+, suggesting a molecular formula of C16H12O7. The UV-VIS absorption maxima at 218,
274, 308 and 424 nm suggests a 9,10-anthraquinone skeleton [23]. Its 1H NMR spectrum (Table
2) revealed an aromatic singlet, a pair of
ortho-coupled aromatic protons, a methoxy and an
oxymethylene substituent as well as three solvent accessible and one chelated (H 12.40)
hydroxyl groups. Two carbonyl functionalities were indicated by 13C-NMR. HMBC correlation
of the methoxy protons with C-1, the oxymethylene protons with C-1, C-2 and C-3 (Table 2) are
consistent with the methoxy, oxymethylene, and a hydroxyl substitution in ring A. The high
chemical shift of the methoxyl group (C 62.4 ppm) is indicative of di-
ortho [24] substitution
allowing its placement at C-1 rather than C-3. Hence, in similarity to previously identified
anthraquinones of the Rubiaceae family [25], ring A of
11 is oxygenated at C-1 and C-3 and has
the oxymethylene at C-2. The aromatic singlet at H 7.55 ppm (H-4) showed HMBC correlation
with the C-10 carbonyl (C 189.2 ppm), indicating their
peri position. The high chemical shift of
this carbonyl is indicative of a
peri hydroxyl group at C-5, which is further confirmed by the
HMBC correlation of the aromatic doublet at H 7.57 ppm (H-8) to the carbonyl at C 178.7 ppm
(C-9), but not with the one at C 188.5 ppm (C-10). These three bond heteronuclear correlations
confirm the dihydroxy-substitution at C-5 and C-6 in ring C. Therefore, compound
11 was
characterized as 3,5,6-trihydroxy-1-methoxy-2-hydroxymethyl-9,10-anthraquinone (Figure 3) for
which the trivial name 5,6-dihydroxydamnacanthol is proposed. Our assignation is in good
agreement with that of the recently reported and closely-related 2-hydroxymethyl-1-methoxy-
3,5,6-trihydroxyanthraquinone-3-O--glycopyranoside, isolated from
Putoria calabrica (L. fil,
Rubiaceae) [26]. An additional evidence for the biosynthetic route in the family Rubiaceae [25]
yielding compound
11 is the presence of the 2-ethoxyl-derivative of
11, 2-ethoxymethyl-3,5,6-
trihydroxy-1-methoxyanthraquinone, in the extract of
Putoria calibrica (L. fil) [27].
Based on the biosynthesis of anthraquinones of the Rubiaceae, most of these compounds are
substituted with hydroxyl, methoxyl and/or methyl groups in ring A (Figure 2) [25], and some
carry additional hydroxyl or alkoxyl groups in ring C, mainly at positions 5 and 6 [25, 28]. These
latter oxygen atoms are introduced at a late stage of the biogenesis [25] which is shown for
example for morindone, as reported from the cell cultures of
Morinda citrifolia [29] and for
putorinoside A, isolated from
Putoria calábrica [27]. As a consequence of the biosynthetic
pathway, most, if not all, anthraquinones carry a carbon substituent at position 2 in ring A [25].
One of the rare exceptions from the above rule is 2-ethoxy-1-hydroxyanthraquinone isolated
from
Morinda citrifolia [30], a compound lacking carbon (CH2, CHO, CH, etc) substitution at C-
2. We would like to emphasize that if carbon substitution is present in an anthraquinone derived
from the family Rubiaceae, based on biogenetics [25] the currently accepted nomenclature it is
placed unambiguously at position 2 in ring A. Not following the above convention [31] may be
perplexing in the evaluation of biosynthetic routes and bioactivities. Hence, the compounds
anthraquinone [31] should be correctly named as 5,6-dimethoxy-2-methyl-9,10-anthraquinone
and 6-hydroxy-5-methoxy-2-methyl-9,10-anthraquinone. Since complete and correctly assigned
spectroscopic characterization was not available for several anthraquinones described here,
detailed MS, and 1H and 13C NMR analysis (based on homo- and heteronuclear correlation
spectra providing unambiguous assignment) is reported (Supporting information).
Despite their promising activity against the W2 and D6 strains of
Plasmodium falciparum, the
comparably high cytotoxicity (Table 1) of
1 and
2 makes their direct application as antimalarial
agents virtually impossible. The anthraquinones isolated from
Pentas lanceolata,
4-
11, show low
cytotoxicity indicating the safer applicability of the anthraquinone containing indigenous
decoction of
P. lanceolata as compared to that of the pyranonaphtoquinone containing
P.
longiflora.
In conclusion, the pyranonaphthoquinones and some of the anthraquinones isolated from the
roots of
P. lanceolata and
P. longiflora showed good to moderate antiplasmodial activities
against the W2 and D6 strains of
Plasmodium falciparum, and an overall low cytotoxicity for
anthraquinones. Careful analysis of their structure-activity relationship followed by rational
synthetic modifications has potential for identifying more applicable agents in the fight against
ACKNOWLEDGEMENT M. Endale is thankful to the German Academic Exchange service
(DAAD) and the Natural Products Research Network for Eastern and Central Africa
(NAPRECA) for a Ph.D. Scholarship. J.P. Alao and P. Sunnerhagen are thankful to the Chemical
Biology Platform at the University of Gothenburg. M. Erdelyi is thankful for the financial
support of the Swedish Research Council (VR2007-4407) and the Royal Society of Arts and
Sciences in Göteborg.
Herewith we declare the absence of any conflict of interest, financial or personal, for all authors.
REFERENCES
1 WHO, World Malaria Report 2008, Geneva, 2008: 9.
2 Heyneman D. The Worldwide Burden of Parasitic Disease, in Parasitic Infections, J. Leech,
M. Sande and R. Root, Eds. Churchill Livingstone: New York. 1988: 11-32.
3 Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick SR. Epidemiology of drug-
resistant malaria. Lancet Infect Dis 2002; 2: 209-218.
4 Willox ML, Bodeker, G. Traditional herbal medicines for malaria. Br Med J 2004; 329:
5 Njoroge NG, Bussmann WR, Gemmill B, Newton LE, Ngumi VW. Utilisation of weed
species as sources of traditional medicines in central Kenya. Lyonia 2004; 7: 71-87.
6 Kokwaro JO. Medicinal Plants of East Africa; University of Nairobi press, Nairobi, 2010:
7 Wanyoike GN, Chhabra SC, Lang'at-Thoruwa CC, Omar SA. Brine shrimp toxicity and
antiplasmodial activity of five Kenyan medicinal plants. J Ethnopharm 2004; 90: 129-133.
8 Koch A, Tamez P, Pezzuto J, Soejarto D. Evaluation of plants used for antimalarial
treatment by the Massai of Kenya. J Ethnopharm 2005; 101: 95-99.
9 Nayak BS, Vinutha B, Geetha B, Sudha B. Experimental evaluation of
Pentas lanceolata
flowers for wound healing activity in rats. Fitoterapia 2005; 76: 671-675.
10 Juma WP, Akala HM, Eyase FL, Muiva LM, Heydenreich M, Okalebo FA, Gitu PM, Peter
MG, Walsh DS, Imbuga M, Yenesew A. Terpurinflavone: An antiplasmodial flavone from
the stem of
Tephrosia Purpurea. Phytochem Lett 2011; 4: 176-178.
11 De Kimpe N, Van Puyvelde L, Schripsema J, Erkelens C, Verpoorte R. Complete Proton
and Carbon-13NMR Spectral Assignments of Pentalongin. Magn Res Chem 1993; 31: 329-
12 Hari L, De Buyck LF, De Pooter HL. Naphthoquinoid Pigments from
Pentas longiflora.
Phytochemistry 1991; 30: 1726-1727.
13 El Hady S, Bukuru J, Kesteleyn B, van Puyvelde L, De Kimpe N, Van TN. New
pyranonaphthoquinone and pyranonaphthohydroquinone from the roots of
Pentas
longiflora. J Nat Prod 2002; 65: 1377-1379.
14 Hayashi T, Smith FT, Lee KH. Antitumor agents. 89. Psychorubrin, a new cytotoxic
naphthoquinone from
Psychotria rubra and its structure-activity relationships. J Med Chem
1987; 30: 2005-2008.
15 Liu R, Lu Y, Wu T, Pan Y. Simultaneous Isolation and Purification of Mollugin and Two
Anthraquinones from
Rubia cordifolia by HSCCC. Chromatographia 2008; 68: 95-99
16 Van T, De Kimpe N. Synthesis of pyranonaphthoquinone antibiotics involving the ring
closing metathesis of a vinyl ether. Tetrahedron Lett 2004; 45: 3443-3446.
17 Puyvelde LV, Geysen D, Ayobangira FX, Hakizamungu E, Nshimyimana A, Kalise A.
Screening of medicinal plants of Rwanda for acaricidal activity. J Ethnopharmacol 1985;
18 Ho LK, Don MJ, Chen HC, Yeh SF, Chen JM. Inhibition of hepatitis B surface antigen
secretion on human hepatoma cells. Components from
Rubia cordifolia. J Nat Prod 1996;
19 Kusamba C, Federici E, De Vicente Y, Galeffi C, The anthraquinones of
Pentas
zanzibarica. Fitoterapia 1993; 64:18-22.
20 Adesogan EK. Anthraquinones and anthraquinols from
Morinda lucida: The biogenetic
significance of oruwal and oruwalol. Tetrahedron 1973; 29: 4099-4102.
21 Ferrari F, Monache GD, Alves de Lima R. Two Naphthopyran Derivatives from
Faramea
cyanea. Phytochemistry 1985; 24: 2753-2755.
22 Koumaglo K, Gbeassor M, Nikabu O, De Souza C, Werner W. Effects of three compounds
extracted from
Morinda lucida on
Plasmodium falciparum. Planta Med 1992; 58: 533-534
23 Scott AI. Interpretation of the Ultraviolet Spectra of Natural Products. Pergamon Press;
Oxford: 1964; 286-289.
24 Schripsema J, Dagnino D. Elucidation of the substitution pattern of 9,10-anthraquinones
through the chemical shifts of
peri-hydroxyl protons. Phytochemistry 1996; 42: 177-184.
25 Han YS, Van der Heijen R, Verpoorte R. Biosynthesis of anthraquinones in cell cultures of
Rubiaceae, Plant Cell, Tissue and Organ culture 2001; 67: 201-220.
26 Ealis I, Tasdemir D, Ireland CM, Sticher O. Two new Lucidin-type anthraquinone
glycosides from
Putoria calabrica. Chem Pharm Bull 2002; 50: 701-702.
27 Gonzalez A, Barrosso JT, Cardona RJ, Medina JM, Rodriguez Luis F. Química de la
Rubiáceas. II. Componentes de la "
Putoria calábrica" Perss. Anales de Quimica 1977; 73:
28 Schripsema J, Ramos VA, Verpoorte R. Robustaquinones, novel anthraquinones from an
elicited
Cinchona robusta suspension culture. Phytochemistry 1999; 51: 55-60.
29 Leistner E. Biosynthesis of morindone and alizarin in intact plants and cell suspension
cultures of
Morinda citrifolia. Phytochemistry 1973; 12: 1669-1674.
30 Ee GCL, Wen YP, Sukari MA, Go R, Lee HL. A new anthraquinone from
Morinda
citrifolia roots. Nat Prod Res 2009; 23: 1322-1329.
31 Osman CP, Ismail NH, Ahmad R, Ahmat N, Awang K, Jaafar FM. Anthraquinones with
Antiplasmodial Activity from the Roots of
Rennellia elliptica Korth. (Rubiaceae).
Molecules 2010; 15: 7218-7226.
Table 1. In vitro antiplasmodial activity and cytotoxicity of crude extracts and pure compounds
Sample (purity in %)
Antiplasmodial activity
Selectivity
50* (µg/mL)
Pentas longiflora (root extract)
Pentalongin (
1, ≥ 98%)
Psychorubrin (
2, ≥ 98%))
Mollugin (
3, ≥ 95%)
Pentas lanceolata (root extract)
Tectoquinone (
4, ≥ 98%)
Rubiadin (
5, ≥ 98%)
Rubiadin-1-methyl ether (
6, ≥ 98%)
Nordamnacanthal (
7, ≥ 99%)
Damnacanthal (
8, ≥ 99%)
Lucidin-ω-methyl ether (
9, ≥ 98%)
Damnacanthol (
10, ≥ 98%)
5,6-Dihydroxydamnacanthol
﴾11, > 99%
﴿
* Data are the mean of at least 3 independent experiments.
§ The mean value of at least 6
independent experiments are given; 95% confidence interval and dose-response curves are
presented in the supporting information
T
able 2. NMR Spectroscopic Data (DMSO-d6) for 5,6-dihydroxydamnacanthol (
11)
position δH (J in Hz)
HMBC (
2J, 3J)
C-1a, 2, 3, 4a, 10
Figure 1. Compounds isolated from the roots of
Pentas longiflora
Figure 2. Structures of known compounds isolated from the roots of
Pentas lanceolata
Figure 3: Structure of 5, 6-Dihydroxydamnacanthol (
11)
Source: http://gup.ub.gu.se/records/fulltext/155021/155021.pdf
A Macroeconomic Analysis of Selected Economic Development Indicators in the Local Government Units in Specific Regions in the Philippines Ivy Benito-Lim The development concerns affected by economic indicators and being addressed are not new; they are in fact common to most Local Government Units (LGUs). The practices they employ, likewise, do not involve
The Yukon Old Crow Helicobacter pylori Infection Project The First Report on the Prevalence and Epidemiology of Helicobacter pylori in Sander Veldhuyzen van Zanten, Laura Aplin, Amy L. Morse, John W. Morse, Monika M. Keelan, Janis Geary, Brendan Hanley, Diane M. Kirchgatter, Wendy Balsillie, Karen J. Dorji Dorji, Tashi D. Wangdi, Hoda M. Malaty, Kinley Wangchuk, Deki Yangzom, James